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GENERAL INTRODUCTION 

Organization of Dissertation 

This dissertation begins with a general introduction containing a literature review. This 

is followed by three research papers that are published or have been accepted for publication. 

The fourth paper will soon be submitted for publication. Permission from the publisher extending 

reproduction and distribution rights has been obtained. A general conclusion section follows the 

four papers. Each paper is similar to the published version, although additional figures and tables 

have been added. Figures and tables are contained in the text of the paper at the appropriate 

location. References cited within each paper are listed after the conclusions of each paper. 

Solid Phase Extraction 

The detection and quantification of organic compounds in various matrices is becoming 

more challenging every day. The number of controlled compounds and the demand for lower 

detection continue to rise. Most compounds cannot be determined directly without some sort of 

initial sample preparation step. This step is often the weakest link in the entire analytical 

determination. Sample preparation frequently introduces the major source of error and takes a 

significant amoxmt of time'. Possibly the most important sample preparation technique is analyte 

pre-concentration. Most samples contain analytes in very low amounts and a concentration step 

is necessary to achieve the desired detection limit. Several sample preparation techniques that 

involve extraction, pre-concentration, or sample clean-up are available such as solid phase 

extraction (SPE), liquid-liquid extraction (LLE)^ Soxhlet extraction^, and supercritical fluid 

extraction"*. For liquid samples, SPE is the most attractive choice. SPE may be used with solid 
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samples if an initial liquid extraction step is used. 

SPE is a relatively new technique that started in the early 1970's with a comprehensive 

study by Fritz, et al. on the use of XAD resins to extract organic molecules from water^ The 

use of SPE has continued to grow with advancements in methodology and materials. This growth 

has often been at the expense of LLE. SPE has many advantages over LLE, some of which are 

shown in Table I. One of the most important advantages is the lower cost of SPE. This cost 

savings stems from reduced analysis time, lower solvent usage, and lower solvent disposal costs. 

Several recent reviews on various aspects of SPE are available^'^. 

SPE is often done in small, plastic columns with a diameter of 0.5 to several centimeters. 

Fifty to several hundred milligrams of adsorbent are held in the column between two frits. 

Connecting the column to vacuum or positive air pressure completes the experimental setup for 

Table I 

Advantages of solid phase extraction over liquid extraction 

Solid Phase Extraction Liquid Liquid Extraction 

on-site sampling possible sample transported to lab 

no emulsion formation emulsion formation frequent 

solvent purity not as important must use high purity solvent 

0.1-10 ml solvent 50-100 ml solvent 

wide range of solvents to use solvent must be immiscible with water 

cleaner extracts due to adsorbent rinsing no rinsing possible 

easily automated difficult to automate 

low cost high cost 
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SPE. The procedure usually consists of four steps. The first step involves rinsing the adsorbent 

with a suitable solvent. This step is necessary when hydrophobic adsorbents are used. These 

materials are non-polar and do not allow water to approach their surface easily. Rinsing with 

certain solvents modifies the resin surface and permits water to approach the adsorbent more 

easily and produces more efficient extractions. Two examples are methanol and acetone. These 

have both a polar end (-0H or -C=0) and a hydrophobic end (-CH3). The hydrophobic portion 

coats the resin surface while the polar portion aids in attracting the aqueous sample. Although 

this is often a very important step, the research presented in the first chapter of this dissertation 

will show this may be disregarded with certain adsorbents. 

The second step in SPE is the actual extraction. An aqueous sample is passed through 

an SPE column where the analytes encounter various attractive forces from the adsorbent. These 

forces may be dispersive, dipole-dipole, hydrogen bonding, ionic, or covalent'®-''. These forces 

cause extraction of the analytes of the aqueous phase onto the stationary phase. Most SPE 

applications use hydrophobic interactions for the extraction. These interactions are simply 

dispersive forces between non-polar groups, and are weak and non-specific. Dipole and hydrogen 

bonding interactions are much stronger and more specific but not as common. This type of 

interaction occurs between electropositive and electronegative atoms, often hydrogen and oxygen, 

nitrogen, or fluorine. Extraction of charged molecules is due to the strong ionic interactions 

between ions of opposite charge. Covalent bonding is quite rare in SPE. This is the strongest 

type of interaction and the most specific. Examples of covalent interactions include the extraction 

of catecholamines on a boronic acid adsorbent'and the extraction of metal ions on a chelating 

adsorbent^'. Other than the distinctive covalent bond, it is often a combination of forces that lead 
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to extraction since many adsorbents contain both a carbon network and a functional group. 

The third step is only necessary for complex samples. By choosing an appropriate rinsing 

solvent, compounds that interfere or are not of interest may be removed from the adsorbent. A 

pH change or organic/aqueous mixture may be used for this purpose. 

The final SPE step is removing analytes from the adsorbent. Common solvents for this 

procedure are methanol, acetone, ethyl acetate, or a buffer of different pH. Elution may require 

only several hundred microliters of solvent. SPE typically results in a concentration factor of 10-

1000 with values as high as 50,000 reported^^. This concentration is imperative in achieving low 

detection limits. 

Various sorbents are currently used for SPE. Much of the original work on the 

development of this technique used a polystyrene-divinylbenzene (PS-DVB) resin (Figure 1). 

This material consists of polystyrene copolymers cross-linked with divinylbenzene (DVB)^^ which 

imparts stability to the resin. PS-DVB may be classified as either microporous or macroporous. 

The synthesis procedure determines the resin type. Microporous resins are prepared by mixing 

a catalyst with the monomer in an aqueous solution. Heating causes polymerization to occur. 

These resins typically have low DVB cross-linking. If a water-immiscible organic solvent is 

added to the reaction mixture, a macroporous resins will form. The reaction solution dissolves 

the monomers, but not the polymers. During polymerization, the organic solvent fills the internal 

pores, resulting in a bead with larger pores and a high surface area. Most macroporous resins 

are cross-linked with higher percentages of DVB. This imparts rigidity and stability to the resin. 

The main physical difference between these two types of resin occxirs when they are rinsed with 

solvents of different polarity. Microporous resins with low cross-liking will swell and shrink with 
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CHg—CH—CHg—CH—CH^-CH—CHs~" 

CH — CHg—CHg—CH2—CHg—CHg— 

— CH —CHg—CHg—CH2—CHg—CHg-

Fig. 1 Structure of polystyrene-divinylbenzene. 
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different solvents. Highly cross-linked macroporous resin will not swell or shrink. PS-DVB 

resins now used for SPE are almost exclusively macroporous. These particles are 10-50 |im in 

diameter and have surface areas in excess of 500 m^/g. Currently, the most common SPE 

adsorbent is silica-C,g. This material consists of silica (-SiOH) modified with various alkyl 

chains'®. The chain may contain fimctional groups such as CN, OH, NHj' SO3", or N(CH3)3^. 

The functional groups alter the polarity of the silica and permit extraction of different classes of 

analytes. 

A recent advance in SPE is the development of impregnated membranes^"*"". These are 

comprised of silica or PS-DVB particles that are held in place with polytetrafluoroethylene or 

glass fibrils. Membranes have several advantages over loose resin SPE colurrms. The particles 

are held rigidly in place, therefore there is little chance of channeling, which arises when an 

adsorbent is not packed tightly into the column. Channeling occurs when the sample finds a path 

of lower resistance, and will tend to take this path instead of passing evenly through the 

adsorbent. The small particle size (5-10 |j,m) and vmiform packing also lead to faster mass 

transfer kinetics. These characteristics allow for higher sample flow rates which decreases 

analysis time. Table II lists several types of adsorbents with their characteristic functional groups 

and typical applications. 

SPE is applicable to almost any type of analyte provided a good choice of sorbent and 

solvent is made. Both solid and liquid samples may be analyzed although a prior extraction of 

a solid matrix is necessary. Recent applications for a variety of analytes are shown in Table III 

with references. 

The effect of resin sulfonation on the retention of organic compounds is described in 
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Table II 

Typical adsorbents used for solid phase extraction 

structure references 

PS-DVB (figure 1) 28,29 

anion-exchange (|)'-N(CH3)3* 30 

cation-exchange (|) - SOj- 31,32 

Silica Si - OH 33,34 

C18 - Si -CigH37 35-40 

C8 - Si -CgHjy 41-43 

phenyl - Si -(j) 44,45 

cyanopropyl - Si -C3H6CN 46-49 

diol - Si -CJH^OCHJCCHOH)^ 50-53 

aminopropyl - Si -C3H6NH2 54,55 

phenylboronic acid - Si -C3H6-NH(1)-B(0H)2 56-58 

cation-exchange - Si -C2H4(|)-S03- 59,60 

anion-exchange - Si C3H,-N(CH3)3^ 61,62 

Membranes 

PS-DVB 63-65 

silica - CI8 66,67 

1 (j) = phenyl group 
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Table III 

Recent applications of solid phase extraction 

Analyte Class Matrix References 

Drugs/Biological compounds Plasma 68-70 

Urine 71-73 

Pesticides Water 74-78 

Foods 79-81 

Herbicides Soil 82,83 

Water 84,85 

Blood 86 

Organic Acids Foods 87,88 

Urine 89,90 

Air particulates 91 

Organic Amines Water 92,93 

Foods 94,95 

Carcinogens/Pollutants Water 96-99 

Soil 100 

Tissue 101,102 

Urine 103 

Metal Ions Water 104-107 

Inorganic Anions Water 108,109 
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Chapter I of this dissertation. The degree of modification was found to be critical in determining 

the extraction efficiency of the resins. Breakthrough analysis was used as another method for 

determining extraction efficiency. Empore membranes embedded with sulfonated resin were used 

for the extraction of a variety of compoimds. 

Ion Chromatography 

Ion chromatography (IC) is a common method used for the separation and determination 

of inorganic and organic ions. This technique was first described by Small, et al.™ in 1975 and 

has since become a simple, reliable, and inexpensive method for the determination of ions in 

various mixtures. 

The availability of a suitable detection technique hindered the initial development of IC. 

Conductivity was the obvious choice, but the high ionic strength of the eluent often swamped-out 

the analyte signal. Suppressors were necessary to reduce the background conductance and permit 

the ions to be detected. In 1979 Fritz, et at/.'" developed low-capacity resins for IC. These 

materials have capacities between 0.005 and 0.20 mequiv/g. The exchange sites are located on 

the outside of each polymer bead and provide efficient exchange characteristics. Low 

conductivity eluents were used which made eluent suppression uimecessary. The exchange groups 

on these resins are commonly -S03'ir and -N(CH3)3^0H' for cation and anion-exchange 

respectively. 

A wide variety of eluents are used for IC. Salts of organic acids are often used for anion 

chromatography'""'". Aromatic acids such as benzoate and phthalate are common, and have the 

advantage of being a strong chromophore which permits indirect UV detection. The hydroxide 
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ion has a high equivalent conductance and is often used as an eluent with indirect conductivity 

detection"''. Inorganic mineral acids, such as nitric acid, are the most popular eluents for alkali 

metals and organic amines"^'"®. As with hydroxide, the hydrogen ion has a very high 

conductance, which is amiable with indirect conductivity detection. Organic bases, as with 

organic acids, may be used with conductivity or indirect UV detection"^'"®. 

Conductivity is the most common type of detector in use today"®. Depending on the 

eluent composition, either increases or decreases in conductivity may be measured. Direct 

spectrophotometric detection is possible if the analyte ions absorb. Most simple ions do not 

absorb, but may be detected with indirect spectrophotometry if the exchange ion contains a 

chromaphore'^". Pulsed electrochemical detections was developed by Johnson, et in the 

early 1980's and is now commercially available. This is an especially powerfiil detection 

technique for saccarides'^^, alcohols'^^, alcoholamines'^'', and sulfur compounds'^^. Mass 

spectrometry is becoming more popular as a detection device for In most cases, 

suppressed IC has been used to avoid salt accumulation in the ion source. 

Several recent review articles on the methods and applications of IC are available. Fritz' 

discussed the fundamental principles and materials used for IC. In a later review, Dasgupta'^" 

discussed more recent advancements of IC. Walton published a chapter on IC, including the 

principles of ion-exclusion, ion-pairing, and ligand-exchange'^". Haddad and Jackson published 

a very thorough book on the principles and applications of IC'^^. 

Although separation of the alkali metals has become routine, there is still interest in 

improving various aspects of these determinations. The simultaneous determination of +1 and 

+2 metals has been difficult to obtain because of the widely different ion-exchange selectivities'^^. 
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Several methods have recently been proposed to accomplish this separation. Column switching 

techniques, in which two or more columns are used, have been described'^" "^. The sample 

passes through a low capacity column which retains +2 metals. The alkali metals are not retained 

on the first column and are passed through to a higher capacity column for separation. This 

technique is somewhat cumbersome, and simpler, single-column methods have been developed. 

Hu, et al. have developed a silica-C18 modified stationary phase for the separation of 

alkali and alkaline earth cations'^®"'^®. An anionic bile salt micelle is hydrophobically attached 

to the CI8 surface. This micelle possesses both ion-exchange and size-exclusion properties. 

Several applications for this stationary phase are given. 

If ordinary stationary phases are used, eluents containing complexing agents are often 

needed. Yan and Schwedt studied the use of a variety of organic acids for the isocratic elution 

of alkali and alkaline earth metals'^'. A displacing counterion (Cu^^ or Ce^^) was added to the 

eluent to permit indirect UV detection. Sato proposed two different eluents to accomplish this 

separation"'"'. The eluents contained both an organic acid and organic base. 

In the past few years, cation-exchange phases have been prepared by coating bonded silica 

with various resins. Polymers of styrene"'", glycidylmethacrylate'"'^, butadiene maleic acid'"*^, and 

acrylic acid'"'"* have been used. These stationary phases have low capacities and produce sharp 

peaks and short retention times. The low capacity allows for dilute eluents which makes 

suppression unnecessary. Alkali, alkaline earth, and heavy metals have been separated with these 

stationary phases. 

Lowering detection limits for alkali metals, particularly in the presence of large excesses 

of other ions is always of interest. Dolgonosov and Krachak developed a highly selective method 
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for the determination of the ammonium ion'"'^. A suppressor column is used as a reaction 

chamber to selectively convert the ammonium ion to nitrogen gas and water. These neutral 

species generate large negative conductivity peaks. Ammonium was detected at the parts per 

billion level in the presence of 100-fold excess alkali metals. 

Hashimoto and Okada developed a system for the trace determination of several alkali 

metals'''®. An eluent containing diaminopropionic acid was used with suppressed conductivity 

detection. Detection limits for NH/, Li^, Na^, and were in the low parts per billion. This 

system is applicable to trace metal determinations in clean rooms. 

Ivask and Pentchuk recently introduced the use of amino acids as modifiers for cation 

chromatography'"". Glycine and B-alanine were found to improve the separation of Na^, K^, and 

NH/. 

The simultaneous separation of cations and anions is currently of great interest. Several 

approaches have been taken to solve this problem. Initially, cation and anion-exchange columns 

were used in series'"'®'''". Simpler methods that involve one column are now available. A 

simultaneous separation of metal ions and inorganic anions is possible if the metals form anionic 

complexes, as several do with EDTA'^"-'^'. Hu and Haraguchi developed a zwitterionic modified 

silica stationary phase'^^. Na^ and were successfiilly separated firom several inorganic anions. 

Crown ethers and cryptands have been used to adjust retention and improve separation of 

cations and anions'^^. These compounds are used by permanently'^"*''^^ or dynamically'^®-'^^ 

coating a silica stationary phase. Metal ions interact differently with the ether cavity, which 

modifies their exchange behavior. Adsorbed crown ethers may be complexed with alkali metal 

cations to form an anion exchanger'^® '^'. 
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Several methods are available for the separation of organic amines. Alkyl amines are 

difficult to detect and a derivatization step is often necessary prior to a reversed phase 

separation'®"*'®^. Fewer procedures have been described for separating non-derivatized amines. 

Organic amines interact with ion-exchange stationary phases electrostatically through the nitrogen 

cation and hydrophobically through the carbon skeleton. This may lead to poor IC peak shapes. 

Organic solvents are often added to the mobile phase to decrease the hydrophobic interactions 

and improve peak shapes. Separating amines by IC is less common, even though no 

derivatization is necessary and conductivity detection is possible'®^-'®^. 

Organic modifiers such as methanol, acetonitrile, and acetone are sometimes added to IC 

eluents'®^. These solvents have a variety of effect on ions in solution'®®. Organic ions are 

retained by a combination of ion-exchange and hydrophobic interaction. Organic solvents in the 

eluent reduce the hydrophobic interaction and alter the retention mechanism. Organic solvents 

also modify the solvation of inorganic ions, which change retention characteristics. Although 

adding small amounts (10-20%) of organic solvent to ion chromatography eluents is not 

uncommon'®'"'®*, little work has been done with predominately organic eluents. Hoffman and 

Liao have studied the retention process of aromatic amines in 100% organic solvents'®'. They 

assign numerical values to the ion-exchange and hydrophobic interaction contribution in the 

chromatographic retention of organic amines. 

Chapters II and III of this dissertation discuss the effect of organic eluents on the 

separation of alkali metal ions and organic amines. A highly cross-linked PS-DVB resin was 

used for all research presented. Chapter II deals specifically with the alkali metals. The effect 

of organic solvents on retention and the addition of 18-crown-6 to the mobile phase are discussed. 
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Several unique separations are shown. In Chapter III, pure organic eluents were used for the 

separation of organic amines. These eluents effectively remove all hydrophobic interaction, 

leaving ion-exchange as the only retention mechanism. Different organic eluents were used and 

several separations presented. 

High Performance Liquid Chromatography 

High performance liquid chromatography (HPLC) is probably the most widely used 

analytical technique today. This popularity is due to the necessity of a prior separation before 

almost any analytical determination. Unlike gas chromatography where the analytes must be 

volatile, HPLC is applicable to almost any compound. HPLC is a general term that encompasses 

many different forms of chromatography. This includes ion'^'"'^^, reversed-phase'™"''^, normal-

phase""'"®, size-exclusion"^""', and thin-layer'®°''®l 

Stationary phases for reversed phase HPLC are dominated by polymer and silica-based 

materials. Silica is generally more efficient than polymer phases, although it is not stable at 

extreme pH values. Stationary phases are the basis for considerable current research interest. 

Several recent investigations have examined the mechanism and theory behind stationary phase 

solvation and the retention process'*^"'®®. 

Many modes of detection are possible with HPLC. Currently, the most common detector 

is UV-Vis absorbance'*^"'^'. Unfortunately, this is not particularly selective or sensitive. 

Refractive index""-'" is a near-universal detector but, like UV-Vis, is not very sensitive. Other 

detectors such as chemiluminescence"^-"^, fluorescence"^'"^ and electrochemical"®-'" are much 

more selective and sensitive. The detectors mentioned thus far do not provide significant 
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qualitative information about the sample composition. Coupling HPLC to other instruments can 

provide this type of information. Mass spectrometers"^"^™, FTIR instruments^"''^"^, or diode array 

detectors^"^'^"^ provide more information and allow the determination of unknown analytes. 

In chapter four of this dissertation, the use of Silicalite as an HPLC stationary phase is 

discussed. This material was first synthesized in 1978^°^ and has since received very little 

attention as a possible chromatography adsorbent. Silicalite is a crystalline silica material that 

is hydrophilic but contains hydrophobic channels approximately 6 A in diameter. Organic 

molecules in water are attracted to the channels while water, which associates into clusters 10-12 

A in diameter, is excluded. For small molecules size-exclusion is another possible selectivity 

mechanism. These facts make Silicalite a good choice for SPE or HPLC. 

Much of the research involving Silicalite has related to adsorption of gasses. Hufton and 

Danner studied the adsorption of alkanes on Silicalite. They discussed both equilibrium 

properties and transport properties^"®'^"^. Various other studies of the sorption process have also 

been reported'°'-''\ 

Shultz-Sibbel, et al. investigated the use of Silicalite for the adsorption of both gasses and 

liquids. Distribution coefficients were measured for many organic compounds in the gas phase. 

Capacities for pure organic liquids were also reported^'''. 

Fritz and Ogawa used Silicalite as an SPE adsorbent^''. Good recoveries of aldehydes and 

ketones from aqueous samples were obtained. 

Andronikashvili, et al. recently used Silicalite as a gas chromatography stationary phase^'®. 

A short column was packed with Silicalite and used for the separation of ortho, meta, and para 

isomers of aromatic compounds. Several separations are shown. 
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In Chapter IV, the use of Silicalite as an HPLC stationary phase is discussed. This 

material was found to be very useful for the separation of a variety of compounds. Isomers, 

which are difficult to separate of silica-C18 were easily resolved on Silicalite in only a few 

minutes. Several comparisons were made between Silicalite and silica-C18. 
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EFFECT OF RESIN SULFONATION ON THE RETENTION OF POLAR ORGANIC 
COMPOUNDS IN SOLID PHASE EXTRACTION 

A paper published in the Journal of Chromatography A, 691 (1995) 123-131 

Philip J. Dumont and James S. Fritz 
Ames Laboratory - U.S. Department of Energy and 

Department of Chemistry, Iowa State University 
Ames, Iowa 50011, U.S.A. 

Abstract 

The hydrophobic nature of polymeric resins used in solid-phase extraction (SPE) often 

limits their efficiency by preventing intimate surface contact with aqueous samples. A polymeric 

resin modified by a series of chemical derivatizations with sulfiiric acid was found to display 

excellent surface hydrophilicity and improved extraction efficiencies. The degree of sulfonation 

was found to play a vital role in determining the SPE efficiency of such resins. By measuring 

the capacity factor (k') of several polar organic solutes in pure water, an optimxmi sulfonation 

capacity of 0.6 mequiv/g was determined. Loose sulfonated resin and Empore® membranes 

embedded with sulfonated resin were used for SPE. Average recoveries were greater than 95% 

for both forms of sulfonated resin for a wide variety of organic compoimds including phenols, 

alcohols, nitro molecules, aldehydes, esters and halogenated alkanes. Breakthrough curves for 
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jP-cresol, ethyl acetoacetate, isophorone, and nitrobenzene were used to compare Empore 

membranes embedded with sulfonated and unsulfonated resins. The sulfonated membrane yielded 

sharper and more efficient breakthrough for all compounds tested. 

Introduction 

Sample preparation has been identified as often the slowest and therefore the most 

expensive step in the analytical process'. SPE has become the preferred technique for sample 

preconcentration. Being a multi-stage method, it is more efficient than simple liquid-liquid 

extraction. Analytes undergo multiple equilibrations with the resin and are therefore more 

strongly retained than in simple liquid extraction where only a single equilibration occurs. It is 

also more easily automated and much less polluting than liquid extraction techniques that use 

relatively large volumes of organic solvents^. An early comprehensive paper investigated 

thoroughly the technique, scope, and limitations of SPE with porous polymeric resins (Rohm & 

Haas, XAD)^. Several reviews on SPE have been published'*'^. Bonded-phase silica particles 

(mostly CIS or C8) dominate the field, although porous polystyrene resins are finding increasing 

use because of their efficiency, ruggedness, and broader pH range. 

One problem with extraction materials now used is the inability of aqueous solutions to 

adequately wet their surface, which is usually hydrophobic. This is true for both silica-C18 and 

underivatized PS-DVB. Pretreatment of the resin column or cartridge with methanol is usually 

necessary to obtain better surface contact with the aqueous solution®-'. 

Recently it has been shown that introduction of polar groups into a PS-DVB resin greatly 

increased the retention of polar organic compounds. Fritz and Sim® modified PS-DVB with 
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alcohol and acetyl functional groups. These modified resins exhibited excellent hydrophilicity 

and a lesser dependence on wetting prior to extraction. They also yielded higher recoveries 

compared to their unmodified analogue. This was attributed to an increase in surface polarity 

allowing the aqueous sample to make better contact with the resin surface. 

Fritz and Schmidt® used a sulfonated PS-DVB resin for the simultaneous extraction of 

bases and neutrals. Bases bind via ion-exchange and neutrals by hydrophobic interactions. A 

two-step elution was then used to elute the bases and neutrals sequentially. Excellent recovery 

of both bases and neutrals was obtained. 

Mills, et al. recently compared sulfonated and unsulfonated silica-C18 for the extraction 

of triazine compounds'. Once again, higher recoveries were obtained with the sulfonated resin. 

This was not attributed to the increased resin hydrophilicity but to hydrogen bonding between the 

amine functionality of the analytes and the sulfonic acid group on the resin. They also 

determined distribution coefficients (KQ) for the atrazine compounds on both resins, and found 

much higher values on the sulfonated resin. 

It is now shown that porous PS-DVB resins modified with surface sulfonic acid groups 

are superior to the unmodified PS-DVB for SPE of organic solutes from aqueous samples. The 

extent of the sulfonation was found to be critical in determining extraction efficiency of such 

resins. The modified resins can be used for SPE in either of two modes - resin packed into mini 

columns or disks of resin-loaded membranes. 
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Experimental 

Reagents and Chemicals 

Chemicals used for the sulfonation reactions were of reagent grade. All analytes studied 

were >99% pure and used as obtained from Aldrich and Fischer. Distilled water was further 

purified with a Bamstead Nanopure II System (Sybron Bamstead, Boston, MA, USA). 

Several sulfonated resins were prepared from 8 |am PS-DVB obtained from Sarasep 

(Sarasep, Inc., Santa Clara, CA, USA). General reaction conditions are shown in Table I. 

Specifically, 2 g of resin was mixed with 5 ml glacial acetic acid to form a slurry. Concentrated 

sulfuric acid was added with stirring. After a given reaction time, the mixture was quickly added 

to ice water to quench the sulfonation reaction. The resin was then filtered through a medium 

glass frit, and rinsed with deionized (DI) water, methanol, 2-propanol, and finally acetone. After 

drying, the cation-exchange capacity was determined. One milliliter of 1 M HCI was passed 

through a known amoimt of resin to ensure all exchange sites were protonated. After rinsing with 

DI water to remove excess HCl, 5 ml of a standardized NaOH solution was slowly passed 

through the column and collected into a flask containing 10 ml of a standard HCl solution. 

Following another DI water rinse, this was titrated with NaOH to the phenolphthalein endpoint. 

Capacities were calculated as milliequivalents SOj" per gram of resin. 

k' Determination 

A small (20 x 2.1 mm I.D.) guard column (Supelco, Bellfonte, PA, USA) was filled with 

approximately 20 mg of resin. This guard colunm was contained within a guard column holder 

and connected to the HPLC system via two injection loops; a 10 ^1 loop from the injector 

(Rheodyne, Berkeley, CA, USA) and a 50 ^l loop to the detector. The HPLC system consisted 
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Table I 

General reaction conditions for resin sulfonation 

Capacity 
(mequiv/g) H2SO4 (ml) Reaction time (min) Temperature 

0.0 

0.1 5 0.5 ice 

0.4 50 2 ice 

0.6 50 4 ice 

1.0 50 10 room temp. 

1.2 50 20 room temp. 

1.5 50 90 room temp 

2.1 50 90 SOT 

2.7 50 90 Z5°C 



www.manaraa.com

32 

of a Gilson Model 302B HPLC pump equipped with a Model 802B Gilson manometric module 

(Gilson, Middleton, WI, USA) and Model LP-21 Scientific Systems pulse dampener (Scientific 

Systems, State College, PA, USA) and a Kratos 783 UV-VIS detector (Applied 

Biosystems,Ramsey, NJ, USA). Retention times were measured with a Hitachi D-2000 

Chromato-Integrator (EM Science, Cherry Hill, NJ, USA). 

Fifty ppm samples were prepared by diluting stock solutions in DI water. Depending on 

the absorbance of the analyte, 10 - 50 |al were injected. Phenols were detected at 270 nm and 

the carbonyl compoimds at 205 nm. DI water at 0.5 ml/min was used as the eluent. The column 

dead time, t^, was determined using the retention time of bromide (sodium bromide). This value 

included the travel time through the tubing (60 |j.l total volume); therefore 0.12 min was 

subtracted from the measured time to calculate the true t^. This value was also subtracted from 

all analyte retention times. 

Capacity factors were determined for the unwetted and methanol wetted resin. Wetting 

was accomplished by injecting two successive portions of methanol from a 500 |j.l loop, followed 

by a 4 ml rinse with DI water. During the water rinse the 500 fil injection loop was replaced 

with the smaller loop for sample injection. 

Procedure for SPE 

The apparatus for SPE consisted of a 30 ml glass syringe barrel fitted with a luer tip. A 

1.5 ml polypropylene SPE column (P.J. Corbert, St. Louis, MO, USA) was connected to the glass 

reservoir via a imiversal adapter. Loose 8 ^m sulfonated resin and Empore (3M Co., St. Paul, 

MN, USA) membranes embedded with sulfonated resin were used as the SPE adsorbents. This 

was placed between two 20 nm polyethylene frits (P.J. Corbert, St. Louis, MO, USA) in the 
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column. The bed height measured approximately 1 cm. Positive pressure was used to force 

liquids through the adsorbents. Prior to use, about 1 ml methanol and 2 ml water were used to 

rinse the column. 

Samples were prepared by adding a 100 |j1 aliquot of a 150 ppm methanol solution 

containing 5-10 analytes to 15 ml of DI water. The final concentration of each compound in the 

sample was about 1 ppm. Air pressure was adjusted to provide a flow of 1-2 ml/min (30-60 psi). 

After loading, the glass reservoir was rinsed with 3-5 ml water and air was blown through the 

column to remove any remaining water. One milliliter ethyl acetate or methanol was used to 

elute the compounds into a GC vial. An internal standard (100 |il of a 150 ppm toluene solution 

in methanol) was added to the vial, which was then analyzed by gas chromatography. A 

Shimadzu GC 14A equipped with an AOC-14 autoinjector, flame ionization detector, and a C-

R4A Chromatopac data analysis system (Shimadzu Corp., Kyoto, Japan) was used to separate and 

quantitate the analytes. The gas chromatographic column was a 15-meter SPB-5 (Supelco, 

Bellfonte, PA, USA). Recoveries were calculated as an average of 3 trials by comparing the 

relative peak areas with standards that were not subjected to SPE. 

Breakthrough Curve Procedure 

Breakthrough curves on a 46 mg sulfonated Empore membrane and a 44 mg unsulfonated 

Empore membrane were determined by passing a dilute solution (5-10 ppm) of analyte 

continually through the SPE column. Five or 10 ml fractions were collected in volumetric flasks. 

In order to concentrate the analyte, the collected sample was passed through another sulfonated 

Empore membrane, which was eluted with 1 ml of methanol into a GC vial. After addition of 

the internal standard, the analyte concentration was determined by gas chromatography. Fractions 
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were collected xmtil the concentration of analyte remained constant. 

Results and Discussion 

Sulfonation of Resins 

Our goal was to make the resin surface more hydrophilic while keeping the interior 

surface hydrophobic enough to allow extraction of organic solutes. A faurly rapid sulfonation 

with sulfuric acid seemed appropriate to accomplish this because sulfonation of resins is known 

to proceed from the outside into the resin. Reacting for a short time will therefore only modify 

the surface of the resin bead. In order to achieve more even wetting of the resin with viscous 

concentrated sulfuric acid, the resin was first slurried with a little glacial acetic acid. Acetic acid 

has both a hydrophobic (-CH3) and hydrophilic (-COOH) portion. This aids in contacting the 

polar acid and non-polar resin. Without the acetic acid the resin sits on surface of the sulfuric 

acid and does not react well. 

Porous PS-DVB resin beads (8 (im) were reacted under a variety of conditions to produce 

sulfonated resins ranging in capacity from 0.1 to 2.7 mequiv/g. The sulfonation conditions and 

capacities are given in Table I. 

Measurement of Capacity Factor 

The efficiency of resins used for SPE is most commonly determined by measuring the 

percentage recovery of test solutes. However, this process depends on the efficiency of elution 

of the analytes from the SPE colirnm as well as the efficiency of the initial extraction step. 

Laconto has pointed out that for 90% recovery, for the extraction step may be anywhere 

between 10 and 100^. A better way to compare the behavior of different resins is to measure the 
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capacity factor of the extraction step. Several methods have been used to measure k' in aqueous 

solutions. One conunon method for measuring capacity factors consists of measuring k' vs the 

percentage of organic solvent in the eluent. After obtaining several points, an extrapolation to 

0% organic solvent is possible. Although this is a common procedure'", it may not be the most 

accurate for SPE where aqueous samples are used. Surface modifications are undoubtedly taking 

place due to adsorption of some of the organic portion of the eluent onto the resin surface. It 

is better to determine k' in the same sample matrix that is common for SPE samples - 100% 

water. However, this can be difficult when k' is very large. Mills. equilibrated a spiked aqueous 

sample with resin for 24 h. The analyte concentration remaining in the aqueous solution was 

used to calculate the equilibriimi constant. 

In the present work the k' values of various analytes were determined by elution from a 

very small resin column using pure water as the eluent. The method is quick and convenient and 

requires no extrapolation since no organic modifier is used in the eluent. The capacity factor is 

determined from the recorded elution curve using the well-known relationship: k' = (tR-tJ/t^. 

In order for this method to be feasible, the column must be small, otherwise many hours may be 

required for elution v^dth water as the eluent. The values of k' are also dependent on the 

measured t,,, although an error in t^ will still give relative values of k' that can be compared for 

different resins. Details of this method are given in the Experimental section. 

Even with a small column non-polar compounds such as benzene would be retained for 

several hours and give flat elution "peaks". For this reason more polar, water-soluble compoimds 

were chosen as test compounds: phenol, catechol, 2,3-butanedione, and ethyl pyruvate. These 

compounds are polar enough to elute in a reasonable time and are easily detected by a UV-Vis 
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detector. 

The k' values of these four test compounds are given in Table II and are plotted against 

the sulfonic acid capacity of the resins in Figures 1-4. In each case the k' increases with 

increasing sulfonation capacity, reaching a maximum at about 0.6 mequiv/g. Further increases 

in sulfonic acid capacity are marked by a rapid decrease in k'. 

The increasing k' values up to 0.6 mequiv/g can be attributed to the fact that a surface-

sulfonated resin is more hydrophilic and therefore more easily wettable. The ability of water to 

come into intimate contact with the resin surface facilitates the transfer of analyte from the 

aqueous sample to the resin surface. The wettability of a resin may be quickly checked by 

adding a few milligrams of dry resin to water. Hydrophobic resins will remain on the surface 

of the water even if stirred. Hydrophilic resins will be dispersed throughout the solution due to 

the ability of polar surface to reduce the surface tension of the water, thus allowing water to 

closely approach the resin surface. In terms of capacity, 0.6 mequiv/g is the minimum 

sulfonation necessary to produce a hydrophilic resin surface. Underivatized PS-DVB and slightly 

sulfonated (up to 0.6 mequiv/g) are not wetted by water, while resins with a capacity of 0.6 

mequiv/g or greater are wetted. 

The lower k' values above 0.6 mequiv/g may be attributed to lower overall hydrophobicity 

of the resin at higher concentrations of sulfonic acid groups. The hydrophobic resin matrix 

becomes increasingly shielded by the bulky, polar sulfonic acid groups. This shielding hinders 

the approach of the analytes to the resin surface. All of the compounds used in this experiment 

were quite polar, but a similar trend would be expected for more non-polar anal3^es, although the 

change may not be as dramatic. Obtaining curves for hydrophobic analytes would be difficult 
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Effect of sulfonation capacity on the retention of polar organic solutes in 
100% water. 

Values are an average of 2 trials. Bold nximbers refer to methanol wetted resins. 

sulfonation capacity 
(mequiv/g) Capacity Factor 

Phenol Catechol Ethyl pjonvate 2,3-Butanedione 
0.0 49 21 10 1 0 0 1 1 

0.1 124 40 32 1 4 0 2 0 

0.4 350 272 45 34 49 40 4 3 

0.6 457 436 90 74 79 60 14 12 

1.0 381 315 70 59 55 54 8 8 

1.2 324 290 78 56 57 38 7 7 

1.5 209 183 45 38 34 26 6 6 

2.1 127 80 25 16 16 9 4 3 

2.7 55 47 12 10 6 5 2 2 
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Fig. 1 Effect of PS-DVB sulfonation capacity on the retention of phenol in pure water for methanol wetted (top 
curve) and unwetted (bottom curve) resins. 
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Fig. 2 Effect of PS-DVB sulfonation capacity on the retention of catechol in pure water for methanol wetted 
(top curve) and unwetted (bottom curve) resins. 
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Fig. 3 Effect of PS-DVB sulfonation capacity on the retention of ethyl pyruvate in pure water for methanol 
wetted (top curve) and unwetted (bottom curve) resins. 
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Fig. 4 Effect of PS-DVB siilfonation capacity on the retention of 2,3-butanedione in pure water for methanol 
wetted (top curve) and unwetted (bottom curve) resins. 
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and time consuming. The retention time for phenol, the most non-polar compound used for this 

study, was about 65 minutes. Judging by the peak shape, a maximum retention time of about 2 

hours may still yield a detectable peak, which leads to an upper k' limit for this technique of 

1000. 

SPE with Sulfonated Resins 

The ability of sulfonated and unsulfonated resins to extract various organic test compounds 

from aqueous samples was compared using identical small colirams packed with the resins. After 

the extraction step, the test compounds were eluted with 1.0 milliliter of ethyl acetate or methanol 

and determined by GC. The percent recoveries are given in Table III. The small resin size (8 

|am) allows even the hydrophobic underivatized resin to extract the compounds, but the sulfonated 

resin, with a more polar surface is even more efficient for extracting these analytes. Note the 

sulfonation capacity for this table is 0.4 mequiv/g which is close to the optimum capacity of 0.6 

mequiv/g. The effect of wetting the resin with methanol is also shown. As expected, this has 

a major effect on the underivatized resin, but is not as important with the sulfonated resin. The 

surface of the sulfonated resin is hydrophilic enough that methanol does not significantly modify 

it. 

SPE with Resin-Loaded Membranes 

Empore membranes embedded with sulfonated resin of approximately 0.6 mequiv/g were 

also used for SPE. Membranes embedded with other materials have been used and described 

previously""'^. They offer several advantages over loose resin including lower back pressure 

necessary to load samples, decreased channeling, and improved mass transfer'""'^. In this study, 

sulfonated membranes were used to extract neutral organic compounds from water. Averaged 
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Table III 

Comparison between sulfonated (0.4 mequiv/g) and unsulfonated resins for solid phase extraction 

Values are an average of 3 trials. Wetting solvent is methanol. 

Average ± R.S.D.(%) 2 

Compoimd 
Recovery(%) 

Compoimd 

sulfonated unsulfonated 

Compoimd 

not wetted wetted not wetted wetted 
Anisole 94 93 83 89 
Benzaldehyde 90 89 87 96 
Nitrobenzene 96 95 88 96 
Hexylacetate 94 94 84 82 
Ben2ylalcohol 90 98 78 81 
Phenol 98 95 77 89 
Catechol 59 34 ND' ND 
/M-Nitrophenol 98 99 89 95 
Mesityl oxide 98 97 93 99 
/rara-2-Hexenyl acetate 93 90 79 89 

95 ± 3.2% 94 ±3.4% 84 ± 5.5% 91 ± 6.3% 

1 not detected 
2 catechol not included 
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triplicate recoveries of 45 analytes are shown in Tables IV-VIII. Many classes of compoxmds 

arerepresented including phenols, alcohols, aldehydes, ketones, and esters. Polar analytes, like 

the phenols, and non-polar analytes such as the halogenated alkanes are all efficiently recovered. 

Recoveries are over 90% for all compounds with relative standard deviations commonly near 3%. 

These recoveries compare very favorably with data reported previously for alcohol and actyl 

derivatized PS-DVB resins and membranes®'"^. 

Analysis of Breakthrough Curves 

The adsorption capacity for several organic compounds was determined by passing a 5-10 

ppm aqueous solution of the analyte through a resin-loaded membrane until breakthrough 

occurred. Since breakthrough is closely related to k'"*, the breakthrough volume (VQ) or retention 

volume (VR) for a particular analyte is a good indication of the extraction ability of the resin. 

For this study, Vg is defined as the volume after extrapolating the middle portion of the curve 

to the x-axis, and VR as the volume at C/CQ = 0.5. C/Cg is the ratio of analyte effluent 

concentration to influent concentration. The resin load capacity may also be determined from a 

breakthrough curve. This is the total number of moles of analyte adsorbed by a resin, and is 

calculated by multiplying VR by the influent concentration'®. 

Breakthrough curves of several compounds were compared for two Empore membranes -

one embedded with underivatized PS-DVB and the other with sulfonated PS-DVB (0.6 mequiv/g 

capacity). Breakthrough curves for four compounds are shown in Figures 5-8. The sulfonated 

resin membrane, being more hydrophilic, produced a sharper breakthrough than the imderivatized 

membrane, which allowed breakthrough almost immediately. 

The parameters calculated from the breakthrough curves are shown in Table IX. 
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Table IV 

Recoveries of phenols (1 ppm) with a sulfonated Empore 
membrane (0.6 mequiv/g) 

Recoveries (%) 

phenol 98 

/7-cresol 102 

2,5-dimethylphenol 98 

/)-chlorophenol 97 

o-chlorophenol 95 

w-nitrophenol 97 

^-isopropylphenol 96 

4-secbutylphenol 98 

4-tertbutylphenol 100 

2-methylresorcinol 91 

4-hexylresorcinol 101 

catechol 53 

Average (w/o catechol) 97 % 
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Table V 

Recoveries of alcohols (1 ppm) with a sulfonated Empore 
membrane (0.6 mequiv/g) 

Recoveries (%) 

1-hexanol 94 

cyclohexanol 93 

2-ethyl-1-hexanol 97 

benzyl alcohol 94 

1-octanol 96 

phenethyl alcohol 96 

2-phenyl-1 -propanol 98 

dodecyl alcohol 94 

Average 95 % 
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Table VI 

Recoveries of aldehydes/ketones (1 ppm) with a sulfonated Empore 
membrane (0.6 mequiv/g) 

Recoveries (%) 

isophorone 100 

hydroquinone 96 

acetophenone 102 

hexyl aldehyde 95 

octyl aldehyde 96 

nonyl aldehyde 93 

9-anthraldehyde 98 

salicylaldehyde 100 

benzaldehyde 104 

Average 98 % 
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Table VII 

Recoveries of esters/ethers (1 ppm) with a sulfonated Empore 
membrane (0.6 mequiv/g) 

Recoveries (%) 

anisole 96 

phenetole 91 

ethyl acetoacetate 97 

methyl benzoate 96 

isopentyl benzoate 92 

ethyl cinnamate 95 

hexyl acetate 93 

/ra«^-2-hexenyl acetate 91 

Average 9 4 %  
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Table VIII 

Recoveries of nitrogen compounds (1 ppm) with a sulfonated Empore 
membrane (0.6 mequiv/g) 

Recoveries (%) 

nitrobenzene 100 

3-nitroacetophenone 98 

TO-nitrophenol 97 

benzonitrile 99 

benzothiazole 97 

o-nitrotoluene 97 

Average 98 % 
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Fig. 5 Breakthrough curve for p-cresol on a sulfonated and imsulfonated Empore membrane. 
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Fig. 6 Breakthrough curve for nitrobenzene on a sulfonated and unsulfonated Empore membrane. 
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Fig. 7 Breakthrough curve for ethyl acetoacetate on a sulfonated and unsulfonated Empore membrane. 
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Fig. 8 Breakthrough curve for isophorone on a sulfonated and unsulfonated Empore membrane. 
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Table IX. 

Comparison of breakthrough data for Empore membranes embedded with unsulfonated 
PS-DVB and sulfonated (0.6 mequiv/g) PS-DVB 

Compound 
Load Capacity 
(10"® moles/g) 

VR (ml) VB (ml) 

Sulf Unsulf Sulf. Unsulf. Sulf. Unsulf. 

/7-Cresol 74.2 47.4 74 46 34 12 

Ethyl acetoacetate 39.3 13.1 46 15 38 0 

Nitrobenzene 223 241 126 132 76 28 

Isophorone 173 185 109 114 45 27 
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Extraction efficiency of the more polar compounds, p-cresol and ethyl acetoacetate, was 

dramatically increased with the sulfonated membrane. Load capacity and VR were similar on 

both membranes, but Vg was significantly larger for all compounds on the sulfonated 

membrane.lt may be expected that less polar compounds would be more easily extracted with an 

imderivatized resin, but this is not necessarily the case. The less polar compounds, nitrobenzene 

and isophorone, do have slightly higher load capacities and Vr on the underivatized membrane, 

but Vg is still much lower. This is caused by the poor curve shape and early breakthrough on 

the underivatized membrane. Vg is the parameter of most concern for SPE because dilute 

samples are usually used and the load capacity of a resin is seldom approached. A sulfonated 

membrane would therefore be the better adsorbent to use for SPE of these types of compounds. 

Conclusions 

Introduction of hydrophilic functional groups to PS-DVB increased the extraction 

efficiency of polar organic molecules firom water. In this work, the effect of resin sulfonation 

capacity has been determined. Sulfonated resins lead to better recoveries of many compounds 

from aqueous solutions. A capacity of 0.6 mequiv/g was determined to be the optimum degree 

of sulfonation. Empore membranes embedded with sulfonated resin are simple to use and 

provide efficient extraction of many compounds. Breakthrough analysis was used to compare 

sulfonated and unsulfonated membranes. Breakthrough on the sulfonated membrane was much 

sharper, indicating a much more efficient extraction process. 



www.manaraa.com

56 

Acknowledgements 

We would like to thank Doug Gjerde of Sarasep for the 8 |j,m resins used for all 

sulfonation reactions. This research was supported by a grant from the 3M Co., St. Paul, MN, 

USA. The work was performed in the Ames Laboratory at Iowa State University. Ames 

Laboratory is operated for the US Department of Energy under Contract No. W-7405-Eng-82. 

References 

1. R. Stevenson, Am. Lab., June (1993) 24H. 

2. J. Snyder, Pollution Eng., 11 (1992) 40-43. 

3. G. A. Jimk, J. J. Richard, M. D. Griesa, D. Witiak, J. L. Witiak, M. D. Arguello, R. Vick, 
H. J. Svec, J. S. Fritz, C. V. Calder, J. Chromatogr., 99 (1974) 745-762. 

4. I. Liska, J. Krupcik, P. A. Leclercq, J. High Resolut. Chromatogr., 12 (1989) 577-590. 

5. P. Laconto, LC-GC, 9(11) (1991) 752-760. 

6. J. J. Sun, J. S. Fritz, J. Chromatogr., 590 (1992) 197-202. 

7. N. Simpson, Am. Lab, August (1992) 37-43. 

8. L. Schmidt, J. S. Fritz, J. Chromatogr., 640 (1993) 145-149. 

9. M. S. Mills, E. M. Thurman, M. J. Pedersen, J. Chromatogr., 629 (1993) 57-67. 

10. S. Bitteur, R. Rosset, J. Chromatogr., 394 (1987) 279-293. 

11. D. F. Hagen, C. G. Markell, G. A. Schmidt, Anal Chim. Acta., 236 (1990) 157-164. 

12. D. F. Hagen, C. G. Markell, V. A. Bunnelle, LC-GC, 9 (1991) 332-337. 

13. L. Schmidt, J. J. Sun, J. S. Fritz, D. F. Hagen, C. G. Markell, E. E. Wisted, 
J. Chromatogr., 641 (1993) 57-67. 

14. B. Bryan, Today's Chemist, 2 (1994) 39-43. 



www.manaraa.com

57 

15. D. D. Blevins, S. K. Schultheis, LC-GC, 12(1) (1994) 12-14. 

16. C. M. Josefson, J. B. Johnston, R. Trubeg, Anal. Chem., 56 (1984) 764-768. 



www.manaraa.com

58 

lON-CHROMATOGRAPHIC SEPARATION OF ALKALI METALS IN 
NON-AQUEOUS SOLVENTS 

A paper accepted for publication in the Journal of Chromatography A 

Philip J. Dumont and James S. Fritz 
Ames Laboratory - U.S. Department of Energy and 

Department of Chemistry, Iowa State University 
Ames, lA 50011, U.S.A. 

Abstract 

Ion-exchange chromatography is a common method for the separation and determination 

of metal cations. Although much research has been done on improving various aspects of this 

technique, the use of non-aqueous eluents has received little attention. In this work, the effect 

of organic solvents on the retention of alkali metal cations on a macroporous polystyrene-

divinylbenzene resin was studied. Retention of alkali cations generally increased as the organic 

content in the eluent increased for most organic solvents, although a maximum does occur at 75% 

organic for some ions. Since organic solvents do not solvate these cations in the same maimer 

as water, increases in the separation factors and changes in elution order were observed. Several 

separations that are not possible with aqueous eluents are shown. 

The effect of crown ethers in the mobile phase was also investigated. 18-crown-6 (18C6) 
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altered the retention of most alkali metal cations. In some cases 18C6 changed elution order or 

improved peak shape. Separations with an organic eluent and 18C6 modifier are also shown. 

Introduction 

Factors that influence the aqueous selectivity of cation-exchange resins for various +1 

metal cations have been studied extensively over many years. Diamond and coworkers'-^ 

proposed a theory of water-enforced ion pairing to explain selectivity toward various cations. 

Electrostatic attraction between the sulfonate groups within the ion-exchange resin and the alkali 

metal cations suggests that cations with the smallest ionic radii would be the most strongly 

retained. The Pauling radii in Table would predict a chromatographic elution order of Cs^, 

Rb^, K^, Na^, Li^, which is exactly the opposite of that observed in ion-exchange chromatography. 

However, hydrated ionic radii and approximate hydration number (Table I) are in the opposite 

order to the Pauling radii, with Li^ being the most highly hydrated. The cation-exchange resins 

Table 1 

Ionic radii of alkali metal cations 

Li^ Na^ r Rb^ Cs" 

Pauling radii, A 0.60 0.96 1.33 1.48 1.69 

Hydrated radii, A 3.40 2.76 2.32 2.28 2.28 

Approximate hydration number 25.3 16.6 10.5 10.0 9.90 
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used in classical ion-exchange chromatography are highly sulfonated and take up a great deal of 

water inside the microporous resin. The hydration of the alkali metal ions thus would remain 

much the same inside the resin as in the aqueous mobile phase. 

The effects of performing ion-exchange separations in aqueous-organic or in organic 

solvents have been studied by a number of investigators. A recent review concludes that ion-

exchange in non-aqueous solvents is very complicated from a theoretical point of view"*. Organic 

solvents are obviously going to affect the solvation of alkali cations compared to the situation in 

water alone. The dielectric constant, viscosity, and other effects will also be different in organic 

solvents. In the present work the ion-chromatographic separation of alkali metals and the 

ammonium ion was studied in pure organic and aqueous-organic eluents. Some major changes 

in selectivity were observed and several practical separations obtained. 

Experimental 

Chromatographic System 

The chromatographic system consisted of several components. An Alltech 425 HPLC 

pump (Alltech Associates, Inc., Deerfield, IL, USA) was used to deliver a flow of 1 ml/min. A 

7125 Rheodyne injector (Rheodyne, Berkeley, CA, USA) delivered a 10 (il sample which was 

detected with an Alltech 320 conductivity detector (Alltech Associates, Inc., Deerfield, IL, USA). 

A Hitachi D-2000 integrator (Em Science, Cherry Hill, NJ, USA) was used to measure retention 

times. Separations were recorded by a Servogor 120 chart recorder (Abb Goerz Instruments, 

Vienna, Austria), and a Keithley Chrom 1-AT data acquisition board (Keithley MetraByte Corp., 

Taunton, MA, USA) with Labtech Notebook software (Laboratory Technologies Corp., 
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Wilmington, MA, USA). Columns were packed with a Shandon HPLC packing pump (Shandon 

Southern, Sewichley, PA, USA) at 3000 psi. 

Reagents and Chemicals 

The cation-exchange resin was prepared in our lab from 5 |xm macroporous polystyrene-

divinylbenzene (Sarasep Inc., Santa Clara, CA USA). Two grams of resin were slurried with a 

few milliliters of glacial acetic acid and placed in an ice bath. Five milliliters of concentrated 

sulftiric acid was added to the resin with stirring. The resin mixture was reacted for 30 seconds 

then poured into ice water to quench the reaction. This procedure produced a sulfonic acid 

cation-exchange resin with a capacity of approximately 0.15 mequiv/g. Absolute ethanol was 

punctilious grade and used as obtained from Quantum (Quantum Chemicals, Newark, NJ, USA). 

All other organic eluents used were of HPLC grade and used as obtained from Fisher (Fisher 

Scientific, Pittsburgh, PA, USA) and Sigma (Sigma Chemical Company, St. Louis, MO, USA). 

The salts and methanesulfonic acid eluent were all of reagent grade and used as obtained from 

Aldrich (Aldrich Chemical Company, Inc., Milwaukee, WI, USA) and Fisher. Either halide or 

acetate salts were dissolved in organic solvents to prepare 1000 ppm stock solutions which were 

then diluted with eluent to produce samples of desired concentrations. 

Results and Discussion 

Type of Resin 

lon-chromatographic separations of alkali metal cations are generally performed with 

sulfonated microporous polymeric resins' ® or with resins coated with a sulfonated latex. A lightly 

sulfonated macroporous resin with a very high degree of cross-linking was selected for the 
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present study. Such a resin would be less likely to undergo volume changes due to swelling and 

should be more compatible with organic solvents. 

A separation of alkali metal ions was first attempted in water alone using the lightly 

sulfonated macroporous cation-exchanger with aqueous 3 mM methanesulfonic acid as the eluent. 

Under these conditions the sample cations exhibited very similar retention times (Figure 1). A 

much better separation would be obtained with a microporous cation-exchanger^. The selectivity 

of the macroporous resin for alkali metal ions was improved considerably by chemically 

introducing hydroxymethyl groups' prior to sulfonation. 

These results seem to indicate that solvation of the resin plays a role in imparting 

selectivity for the various sample ions. Microporous cation-exchange resins form a gel and are 

highly hydrated within. With sulfonated macroporous resins, the hydrated alkali metal ions may 

be repelled somewhat by the hydrophobic resin matrix. The presence of hydroxymethyl groups 

on the macroporous resin makes it less hydrophobic and was found to improve selectivity for the 

hydrated alkali ions. 

When the macroporous resin column in Figure 1 was used with the same acidic eluent in 

100% methanol, the chromatographic separation was improved considerably (Figure 2). Now the 

alkali metal ions are solvated with methanol and the resin matrix is probably coated with a thin 

layer of methanol, which makes the ions and the resin surface more compatible with one another. 

Ion Chromatography in Organic Solvents 

Ion-exchange selectivity in organic solvents and in mixed solvents involves a complex 

series of effects. The dielectric effect and ionic solvation seem to play the major roles, but 

interactions involving the solvent, resin exchange sites, analyte ion, and eluting ion also affect 
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MInutes 

Fig. 1 Separation of 2-48 ppm Li^ (1), Na^ (2), (3), Rb^ (4), and Cs^ (5) on a 15 cm 
cation-exchange column with 3 mM methanesulfonic acid in water as the eluent. 
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retention*. 

Capacity factors for the alkali metal cations were measured in eluents containing 0-100% 

organic solvent (Table II). The capacity factors, k', of the cations generally increase with greater 

organic content of the solvent. This trend was observed for all eluents up to a composition of 

75% organic/25% water. Retention decreased when the organic content was increased to 100% 

for all cations in methanol and several cations in acetonitrile and ethanol. Increased retention of 

sample cations may be explained at least partly by the lower dielectric of organic solvents. This 

favors ion-pair formation with the result that analyte cations will be electrostatically attracted 

more strongly to the resin sulfonate anion. Solvation also appears to be a major force. As the 

organic content is increased toward 100%, analj^e cations must become less solvated by water 

and more solvated by the organic solvent molecules which are all larger than water molecules®. 

The larger radii should inhibit the approach of the cation to the resin and therefore cause a 

decrease in the retention times. At about 75% methanol this effect becomes more important than 

the continued decrease in dielectric. The data for ethanol also support this. Maxima are observed 

for Li^ and Na"" which are the most highly solvated ions. Replacing water with ethanol in the 

hydration sphere should have a larger effect on the solvated radii of these ions than the other less 

solvated alkali ions. The change in solvated radii is therefore more important for Li^ and Na^ 

than the decrease in dielectric. No maxima is observed for 2-propanol, indicating that the 

decrease in dielectric is more important than the change in solvation radii. The maxima in 

methanol are represented graphically in Figure 3. A similar maximum has been observed by 

others'"'^. 

Linear plots were obtained in 100% methanol for log k' vs. log (methanesulfonic acid). 
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Table II 

Capacity factors in organic and mixed solvents with 0.5 mM 
methanesulfonic acid as the eluent 

Solvent Li" Na^ K" Rb" Cs^ NH/ 

100% Water 2.27 2.27 2.71 2.74 2.96 3.04 

Methanol 

25% 2.66 2.47 2.77 2.80 2.98 3.13 

50% 3.10 3.07 3.31 3.39 3.80 3.70 

75% 4.43 5.07 6.32 7.30 8.33 5.82 

100% 2.08 2.82 3.73 4.33 5.15 3.09 

Ethanol 

25% 2.75 2.57 2.78 2.78 2.96 3.13 

50% 3.25 3.09 3.37 3.48 3.76 3.78 

75% 4.61 5.14 6.90 7.62 8.76 5.98 

100% 1.86 3.84 7.24 8.84 9.87 2.12 

2-Propanol 

25% 2.20 1.98 2.11 2.05 2.17 2.45 

50% 2.26 2.14 2.35 2.41 2.62 2.88 

75% 3.41 3.52 4.42 4.81 5.66 4.69 

100% 8.84 12.3 19.5 >20 >20 4.54 

Acetonitrile 

25% 2.10 2.10 2.37 2.38 2.54 2.51 

50% 2.50 2.38 2.89 2.98 3.35 3.10 

75% 3.00 3.12 3.79 3.95 4.45 3.98 

100% 4.46 2.11 1.75 1.59 1.54 2.40 
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Fig. 3 Effect of methanol on the retention of alkali metals. The eluent contained 0.5 mM methanesulfonic acid. 
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as shown in Figure 4. Slopes of all the cations were very close to the theoretical slope of -1.0 

(± 0.02). This indicates the ion-exchange mechanism is well-behaved. 

The separation factor for potassium/ammoniimi on most chromatographic systems is 

usually fairly small. However, the ratio of retention times is quite large in 100% ethanol: 

7.24/2.12 = 3.4. The chromatogram in Figure 5 shows that an ammonium peak of only 
4 

10 ppm can easily be separated from a 1,000 ppm peak. An even larger ratio of tK+Zt^H ^ is 
4 

found in 2-propanol. However, the peaks in 2-propanol were much broader than in methanol and 

ethanol, and the sensitivity of the conductivity detector was appreciably lower. 

Retention in acetonitrile followed the same general trend as with the alcohol eluents. In 

100% acetonitrile a unique elution order was observed; Cs^ eluted first and Li^ eluted last. This 

is the reverse of the normal elution order for the alkali metals. The reason for the reversal is not 

clear, but the inability of acetonitrile to hydrogen bond and the lack of a lone electron pair on 

an oxygen atom may play a role. Unfortunately, the chromatographic peaks obtained in 100% 

acetonitrile were generally quite broad. 

Effect of 18-crown-6 

Crown ethers have been known for many years to complex alkali metal cations'^. In 

recent years they have been used to manipulate selectivity in ion chromatography'''"'®. Often they 

are used in a water-organic mobile phase to dynamically coat a silica-CIS or polymeric resin 

column. The retention mechanism involves ligand-exchange rather than ion-exchange. In this 

research a crown ether was added with methanesulfonic acid to the organic eluent. The crown 

ether was sufficiently soluble that no dynamic coating of the stationary phase took place'''. This 

was verified by plotting log k' vs. log H^ for Li^ and in organic eluents containing 10 mM 
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Fig. 4 Effect of methanesulfonic acid concentration on the retention of alkali metals in 100% methanol. 
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Fig. 5 Separation of 10 ppm NH/ and 1000 ppm K"^ on a 10 cm column with 1 mM 
methanesulfonic acid in 100% ethanol as the eluent. 
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18C6. 100% acetonitrile and 75% methanol were tested. In both eluents,slopes of the Li^ and 

lines were very close to -1.0. If 18C6 were coating the resin, a second retention mechanism 

of ligand-exchange would affect the K" ion significantly more than the Li^ ion and a difference 

in slopes would be expected. The slopes were nearly identical in both eluents, therefore it was 

concluded that no coating was taking place and the retention mechanism was purely ion-

exchange. 

The alkali metal ions have larger formation constants with 18C6 in organic solvents than 

in water". It was expected that 18C6 would increase retention due to formation of a larger 

cationic complex. This was found to be generally true but not necessarily because of the 

formation of larger cations. 

The effect of 18C6 on the ion-exchange behavior of alkali metals in non-aqueous solvents 

is shown in Table III. Although increasing concentrations of 18C6 in acetonitrile increase the 

capacity factors of all of the ions studied, the large increase in the k' of lithium was the most 

striking. The separation factor (k'Li+ / k'Na+) was 3.8 compared with 2.6 with no crown ether. The 

presence of the crown ether also sharpens the Li"" peak in the separation of Na^ and Li* (Figure 

6). This permitted the separation of 1 ppm Li"" from 500 ppm Na* as shown in Figure 7. Data 

in Table III suggest small amounts of Li^ can be separated from much larger amounts of all other 

alkali metal ions as well. 

does not complex 18C6 in water or methanol, but it does have a large formation 

constant in acetonitrile (Kf=10®'^)". The longer retention times in acetonitrile may be a 

consequence of the strong complex between and the crown ether. This complex is stronger 

than any complex with alkali metal ions. A large IT complex would be a weaker eluting species 
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Effect of 18C6 on k' of alkali metal ions in organic solvents 

10 cm column with 2 mM methanesulfonic acid in methanol as the eluent 
mM 18C6 

0 0.1 1.0 10 

Li^ 1.45 1.31 1.32 1.34 

Na* 1.80 2.06 2.21 2.20 

r 2.55 2.67 2.63 2.59 

Rb^ 3.05 4.08 4.05 4.01 

Cs^ 3.77 4.17 4.21 4.23 

NH4" 1.93 2.71 3.34 3.36 

10 cm column with 1 mM methanesulfonic acid in acetonitrile as the eluent 

0 0.1 1.0 10 

Li^ 3.57 4.59 7.17 8.97 

Na^ 1.39 1.33 1.64 2.34 

1.34 1.26 1.65 2.48 

Rb^ 1.26 1.26 1.73 2.45 

Cs^ 1.24 1.27 1.71 2.74 

NH/ 1.50 1.39 2.18 3.35 
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Fig. 6 Effect of 18-cro'wn-6 on the peak shape and retention of Li"^(8 ppm) with 1 mM 
methanesulfonic acid in acetonitrile as the eluent. 
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Fig. 7 Separation of 500 ppm Na^ and 1 ppm Li"^ on a 10 cm column with 1 mM 
methanesulfonic acid and 1 mM 18C6 in 100% acetonitrile as the eluent. 
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than alone and the retention times of the alkali metals would increase. The alkali metal 

formation constants with 18C6 are generally higher in methanol than in acetonitrile except for 

Li^, which is not complexed. Addition of 0.1 mM 18C6 increases k', but increasing the 

concentration further has little effect. IT is scarcely complexed in methanol, so the changes 

in retention are due to the interaction of the crown ether with the metal cations. It is unclear 

why is affected so little since it has the largest Kf with 18C6. The other cations generally 

elute in order of decreasing Kf. The metals with higher Kf values spend more time as a 

larger, complexed ion. The larger ions have the largest k' values in methanol. 

Including NH/ in a separation with the alkali metals was not possible in 100% 

methanol. It eluted very closely to Na^ and could not be separated. The addition of 18C6 did 

adjust the retention times but not in a manner to allow a separation. An eluent of 75% 

methanol was found to increase separation factors of several cations. Adding 18C6 to this 

eluent further increased the resolution and improved peak shapes. A separation of four ions 

in 75% methanol, 1.5 mM methanesulfonic acid, and 1 mM 18C6 is shown in Figure 8. The 

effect of 18C6 is easily seen when comparing this to a similar separation without 18C6 

(Figure 9). 

Conclusions 

The use of non-aqueous solvents with macroporous cation-exchange resin permits several 

separations that are very difficult with aqueous eluents. Methanol was found to be the most 

favorable solvent due to the best combination of resolution and peak shape. Acetonitrile and 

ethanol, although producing broader peaks, were useful for separating ions that usually elute close 



www.manaraa.com

76 

30 

>s p 

p 20 U 3 "O c o (_> 

10 

0 s 15 20 25 30 

M l n u t e s  

Fig. 8 Separation of 1 ppm Li^ (1), 3 ppm Na^ (2), 3 ppni NH/ (3), and 9 ppm (4) 
on a 5 cm coluiim with 1.5 inM methanesulfonic acid and 1 mM 18C6 in 75% 
mellianol as the eluent. 
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Fig. 9 Same separation as Figure 8 but without 18C6. 
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together, Lr/Na^ and K^/NH4"^ respectively. Elution order in acetonitrile is reversed from that 

foimd with aqueous eluents: Cs'^<Rb^<K^<Na^<Li'^. Addition of 18C6 to the mobile phase 

improves both peak shape the resolution of several ions. 
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Abstract 

Much of the selectivity of organic ions in conventional ion chromatography comes from 

hydrophobic interaction between the carbon chain of the analyte ions and the polymer matrix of 

the ion-exchanger. By operating in organic solvents containing little, if any, water, the true ion-

exchange selectivity of various organic ions can be measured. Capacity factors, k' for a series 

of protonated amine cations were measured in methanol, ethanol, 2-propanol and acetonitrile 

using a polymeric cation-exchanger resin, conductivity detection, and eluents of methanesulfonic 

acid in the same organic solvent. Plots of log k' vs. log methanesulfonic acid concentration were 

linear with slopes close to the theoretical slope of -1.0 except for acetonitrile where the slopes 

averaged -0.82. The capacity factors showed little change with increasing carbon chain length 

in n-alkylamine cations, but increased substantially at fixed eluent concentration in going from 
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methanol, to ethanol, to 2-propanol and especially to acetonitrile. 

Several practical separations of organic amine cations were demonstrated in non-aqueous 

media. One advantage of this technique is that neutral organic compounds elute very quickly in 

non-aqueous media and thus do not interfere with the chromatographic separations of ions. 

Introduction 

Organic solvents have been used in classical ion-exchange chromatography to aid in the 

separation of metal cations'"^. Formation of metal complexes with chloride and other anions was 

found to occur much more readily in organic solvents than in water alone. Organic solvents have 

also been added to aqueous eluents in modem ion chromatography to modify the behavior of 

various ionic analytes. However, the percentage of organic solvent in the eluent has generally 

been < 20%. Rabin and Stillian recently discussed practical aspects on the use of organic 

solvents in ion chromatography''. The solvents were used primarily for selectivity mediation of 

the ion-exchange process for separation of various anions. 

In the ion-chromatographic separation of organic cations, it has long been known, or at 

least suspected, that the mechanism involved more than simple ion-exchange. Lee and Hoffman^-^ 

have shown that two mechanisms occur in such cases - ion-exchange and hydrophobic interaction 

between the sample cations and the resin matrix. For example, these authors showed that the 

slopes of the linear plot of log k' vs. carbon number for protonated amine cations were less in 

an eluent of 70% acetonitrile (30% water) than with an eluent of 30% acetonitrile. This was 

attributed to the greater hydrophobic interaction present with the 30% acetonitrile eluent. 

The purpose of the present investigation was to study ion chromatography in organic 
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solvents containing little if any water. Under these conditions, solvation of the lipophilic part of 

the cation should be sufficient to virtually eliminate the hydrophobic interaction between the 

sample cations and the resin. In this way the true ion-exchange selectivity can be measured. 

This paper deals with ion-exchange chromatography of organic cations in non-aqueous solvents. 

A companion paper is concerned with alkali-metal cations in organic solvents^. 

Experimental 

Chromatographic System 

The chromatographic system consisted of several components. An Alltech 425 HPLC 

pump (Alltech Associates, Inc., Deerfield, IL, USA) was used to deliver a flow of 1 ml/min. A 

7125 Rheodyne injector (Rheodyne, Berkeley, CA, USA) delivered a 10 |j,1 sample which was 

detected with a Alltech 320 conductivity detector. For all separations, decreases in conductivity 

were measured. A Hitachi D-2000 integrator (EM Science, Cherry Hill, NJ, USA) was used to 

measure retention times. Separations were recorded by a Servogor 120 chart recorder (Abb 

Goerz Instruments, Vierma, Austria), and a Keithley Chrom 1-AT data acquisition board (Keithley 

MetraByte Corp., Taunton, MA, USA) with Labtech Notebook software (Laboratory Technologies 

Corp., Wilmington, MA, USA). Columns were packed with a Shandon HPLC packing piraip 

(Shandon Southern, Sewickley, PA, USA) at 3000 psi. 

Reagents and Chemicals 

The cation-exchange resin was prepared in our lab from 5 ^m macroporous polystyrene-

divinylbenzene (Sarasep Inc., Santa Clara, CA, USA). Two grams of resin were slurried with 

a few milliliters glacial acetic acid. An excess of concentrated sulfuric acid was then added to 
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the resin slurry and placed in an ice bath. This reaction mixture was stkred for 0.5 to 4 min to 

produce the desired exchange capacity of 0.15 or 0.65 mequiv/g. Methanol, acetonitrile and 2-

propanol were of HPLC grade and used as obtained from Fisher (Fisher Scientific, Pittsburgh, 

PA, USA). Punctilious absolute ethanol was used as obtained from Quantum (Quantum 

Chemicals, Newark, NJ, USA). All eluents were prepared daily. The analytes and 

methanesulfonic acid eluent were all of reagent grade and used as obtained from Lancaster 

(Lancaster Synthesis, Inc., Windham, NH, USA), Aldrich (Aldrich Chemical company. Inc., 

Milwaukee, WI, USA), and Fisher. Stock solutions of 1000 ppm were used to prepare all 

samples. 

Results and Discussion 

Types of Resin 

One common resin used for separation of cations in modem ion chromatography is a 

sulfonated microporous resin of low exchange capacity®'® or a resin coated with a latex of low 

cross-linking. These materials tend to swell somewhat in water to form a gel. In the present 

study, a sulfonated macroporous resin of high cross-linking was used. This resin is compatible 

with a wide variety of organic solvents and appears to xmdergo little if any swelling in going 

from one solvent to another. 

Effect of Eluent Cation Concentration 

After trying several different inorganic acids, methanesulfonic acid was selected as the 

eluting acid for the separation of protonated amine cations. In ion chromatography of cations 

with as the eluting cation, k' should vary according to the following equation: 
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log k' = -m log + b 

where m is the slope of a linear plot. Linear plots were obtained for the C,-C,o n-alkylamines 

in methanol, ethanol, 2-propanol and acetonitrile. The slopes were very close to the theoretical 

slope of -1 in the three alcohols and only a little less than -1 in acetonitrile (Table I). Figures 

1 and 2 graphically display the ion-exchange behavior of three alkyl amines and 3 aniline 

compounds. These eluents effectively removed the hydrophobic interaction as was evident by 

the closeness of the measured slope to the theoretical slope of -1.0. 

Effect of Solvent on k' 

A plot of log k' vs. the number of carbon atoms is linear for members of a homologous 

series in HPLC'°. The slope of such a plot is an indication of the extent of the hydrophobic 

effect of the carbon chain on the capacity factor, k'. 

The capacity factors of Cj-Cio n-alkylamine cations were measured imder identical 

chromatographic conditions in each of four organic solvents. The results are shown graphically 

in Figure 3. The values of k' were very similar for the various amines in any given solvent 

although slight variations were present at the extremes. This could be interpreted as some 

residual hydrophobic attraction for the larger amines, or poor ionic solvation for the smaller 

amines in certain solvents. The k' values for the homologous series increase in the order 

methanol < ethanol < propanol « acetonitrile. These results might be explained by a lower 

degree of solvation of the RNHj"^ in acetonitrile than in the alcohols where hydrogen bonding 

through the -OH and interaction with a lone electron pair on oxygen were possible. A higher 

degree of solvation would attract the RNHj^ more strongly to the liquid mobile phase and 
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Table I 

Slopes of Log tji' - Log [IT] lines in organic solvents. The resin contained 0.65 
mequiv/g of -SOj-H"". Eluents contained 75, 50, 25, and 10 mM methanesulfonic acid. 

Methanol Ethanol 2-Propanol Acetonitrile 

Methylamine -0.95 -1.02 -0.92 -0.85 

Ethylamine -0.94 -1.00 -0.92 -0.85 

Propylamine -0.93 -1.01 -0.93 -0.84 

Butylamine -0.93 -1.01 -0.92 -0.83 

Pentylamine -0.92 -1.00 -0.93 -0.81 

Hexylamine -0.90 -1.00 -0.93 -0.80 

Heptylamine -0.92 

o
 

o
 1 -0.93 -0.78 

Octylamine -0.92 -1.01 -0.92 -0.79 

Nonylamine -0.90 -1.00 -0.92 -0.82 

Decylamine -0.89 -1.01 -0.92 -0.81 
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reduce retention. 

The capacity factors of a number of amine cations are given in Table II. Elution is 

strongly dependent on solvation of the amine cation and the dielectric of the eluent. The effect 

of dielectric is seen by the 2-propanol k' values in Table II. Although 2-propanol should be a 

stronger eluent for the amines, retention times are longer. This is due to the low dielectric of 2-

propanol which favors the amine cation remaining paired to the resin exchange sites. Methanol 

and ethanol have more moderate dielectric constants but have different efficiencies for solvating 

straight-chain and aromatic amines as can be seen by the capacity factors of the octylamine and 

aniline cations. 

Separation of Protonated Amine Cations 

The data in Figure 3 indicate that none of the solvents studied would be a suitable choice 

for separation of the n-alkylamine ions. However, an excellent separation was obtained for the 

protonated cations of aniline, N-methylaniline, and N, N-dimethylaniline as shown in Figure 4. 

These ions differ only by one or two methyl groups. Good separations were also obtained in 

methanol for a sample containing n-octylamine, di-n-octylamine and tri-n-octylamine (Figure 5) 

and for another sample containing ethylamine, diethylamine, and triethylamine (Figure 6). 

Conductivity detection can be used in any of the solvents studied but the sensitivity is 

better in eluents with higher dielectric constants (methanol and acetonitrile). Elution of an amine 

cation reduces the concentration of the more mobile and thereby gives a peak of decreased 

conductance for the alcohol solvents. Conversely, has a lower conductivity than the amine 

cations in acetonitrile and a positive signal was measured. For convenience, the chromatographic 

peaks are displayed graphically on a conventional y-axis of increasing signal. 
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Table II 

Capacity factors of protonated amine cations in alcohol solvents on a 5 cm lightly 
sulfonated colnmn. Eluent contained ImM methanesulfonic acid. 

AMINE Methanol Ethanol 2-Propanol 

aniline 1.98 1.62 5.78 

N-methylaniline 3.18 4.10 13.64 

N,N-dimethylaniline 4.37 7.68 27.6 

n-octylamine 2.39 1.82 4.83 

di-n-octylamine 4.57 3.26 9.43 

tri-n-octylamine 7.54 4.61 17.6 



www.manaraa.com

91 

20 

15 

10 

5 

Q 
5 15 20 0 10 

Mi nutes 

Fig.4 Separation of 12.5 ppm aniline (1), N-methylaniline (2), and N,N-dimelhylaniline 
(3) on a 5 cm sulfonated resin column (0.15 mequiv/g) with 1 mM 
metlianesulfonic acid in metlianol as tlie eluent. 
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Fig. 5 Separation of 50 ppm n-octylaniine (1), di-n-octylaniine (2), and tri-n-octylainine 
(3) on a 5 cm lightly sulfonated column witli 1 inM methanesulfonic acid in 
metlianol as tlie eluent. 
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Fig. 6 Separation of 50 ppm elhylamine (1), dietliylaniine (2), and triethylamine (3) on 
a 15 cm lightly sulfonated column witli 5 mM methanesulfonic acid in metlianol 
as the eluent. 
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The capacity factors of most neutral organic compounds are very low in the solvents 

studied. This means that neutral organic compounds will be eluted quickly and not interfere with 

the chromatographic separation of the amine cations. A separation of 50 ppm aniline, N-

methylaniline, and N,N-dimethylaniline in a sample spiked with 10,000 ppm of toluene is shown 

in Figure 7. The toluene elutes in a very compact, early peak. 

Determination of Trace Amines in Organic Solvents 

With the use of organic eluents, it should be possible to detect very small amounts of 

organic bases in solvents. A large volxmie of organic solvent may be injected. The amine will 

be retained by electrostatic attraction while the solvent passes through the column with the 

injection peak. In Figure 8, 50 ppb aniline in toluene (with 0.75 mM methanesulfonic acid) is 

determined. The detection limit of this system was determined by analyzing the baseline noise 

after elution of the aniline peak. Using three times the standard deviation of the noise as the 

criteria, a detection limit of 5 ppb was determined. This type of trace analysis should be 

applicable to many bases in organic solvents. 

Conclusions 

A plot of log k' vs. log (from methane sulfonic acid) was linear with a slope close to 

-1 in each of the foxir solvents studied. This is an indication that the separation mechanism is 

pure ion-exchange and not based on hydrophobic attraction. The capacity factors of C,-C,o 

alkylamine cations showed very little change with regard to the number of carbon atoms. 

However, amine cations such as aniline, N-methylaniline, and N, N-dimethylaniline, were easily 

separated. These results indicate that the size and shape of the cation, particularly near the 
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Fig. 7 Separation of 50 ppni aniline (I), N-melhyianiline (2), and N,N-dinietliylaniline 
(3) in a sample spiked witli 10,000 ppni toluene on a 5 cm lightly sulfonated 
coluimi with 2.5 niM methanesulfonic acid in ethanol as the eluent. 
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Fig. 8 Injection of 200 |j,l toluene with 50 parts per billion aniline and 0.75 mM 
methanesulfonic acid. The eluent is 0.75 mM methanesulfonic acid in methanol 
at 1.5 ml/min. 
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nitrogen, affect the ion-exchange selectivity. 

Practical separations of amine cations can be obtained in methanol or gthanol with indirect 

conductivity detection. Large concentrations of neutral organic compounds in the sample do not 

interfere with the chromatographic separation and determination of amine cations. 
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Abstract 

A silica-based molecular sieve was used as a stationary phase for reversed phase high 

performance liquid chromatography (HPLC). This material is very hydrophilic but possesses 

hydrophobic channels which are approximately 6A in diameter. Small molecules may partition 

into and out of the channels. Larger molecules have more difficulty interacting with this 

stationary phase. This size-exclusion effect is a second selectivity mechanism that may be used 

to obtain unique separations. Comparisons between Silicalite and silica-C18 are shown along 

with several separations that demonstrate the capabilities and limitations of this material as an 

HPLC stationary phase. Larger-scale separations of cis/trans isomeric pairs using displacement 

chromatography was also performed on Silicalite. Milligram quantities of pure cis or trans 

isomer were collected using this technique. 
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Introduction 

Silicalite is one particular polymorph of SiOH. It contains 5-membered rings of 

alternating silica-oxygen arranged in a tetrahedral pattern. This material is hydrophilic but 

contains hydrophobic channels approximately 6 A in diameter. Silicalite was first synthesized 

in 1978', but has received very little attention as a possible chromatography stationary phase. 

Organic molecules are attracted to the hydrophobic channels while water, which associates into 

clusters 10-12 A in diameter, is excluded. For smaller molecules, size-exclusion and hydrophobic 

interaction are possible retention mechanisms. These characteristics make Silicalite an interesting 

choice as an HPLC stationary phase. 

Much of the research involving Silicalite has related to the adsorption and kinetic 

mechanisms of gas adsorption^"'". Fritz and Ogawa used Silicalite as an SPE adsorbent. Good 

recoveries of aldehydes and ketones from aqueous samples were obtained". 

Andronikashvili, et al. recently used Silicalite as a gas chromatography stationary phase. 

A short colunm was packed with Silicalite and used for the separation of ortho, meta, and para 

isomers of aromatic compounds. Several separations are shown'^. 

For this work, Silicalite was packed into HPLC columns and used for the separation of 

a variety of neutral organic compounds. 

Experimental 

Chromatographic System 

The chromatographic system consisted of several components. A SpectraPhysics P2000 

(Spectra-Physics Analytical, Freemont, CA, USA) HPLC pump was used for mobile phase 
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delivery. A 7125 Rheodyne injector (Rheodyne, Berkeley, CA, USA) delivered a 10 |j1 sample 

to the column and was then detected with a Kratos 783 UV-VIS detector (Applied Biosystems, 

Ramsey, NJ, USA). Separations were recorded by a Servogor 120 chart recorder (Abb Goerz 

Instruments, Vienna, Austria), and a Keithley Chrom 1-AT data acquisition board (Keithley 

MetraByte Corp., Taunton, MA, USA) with Labtech Notebook software (Laboratory Technologies 

Corp., Wilmington, MA, USA). 

The setup for the displacement chromatography experiment consisted of two HPLC 

systems, shown in Figure 1. A 10-25 cm displacement separation column was connected directly 

between pump #1 and injector #1. After leaving the displacement column, the eluent passed 

through a 5 {il loop on injection valve #1. A second, smaller column was used to obtain the 

analytical separation of the effluent from the displacement colximn. An Alltech 425 HPLC pump 

(Alltech Associates, Inc., Deerfield, IL, USA) was used to deliver the mobile phase to the 

analytical column. Turning injection valve #1 allowed a 5 ^1 portion of the displacement column 

effluent to be directed to the analytical column and on to the UV-Vis detector for quantitation. 

The analytical separation took only two minutes or less, therefore fractions could be analyzed at 

least every two minutes. 

Reagents and Chemicals 

All analytes and solvents used were of reagent grade, and used as obtained from Aldrich 

(Aldrich Chemical Company, Inc., Milwaukee, WI, USA) and Fischer (Fisher Scientific, 

Pittsburgh, PA, USA). Distilled water was further purified with a Bamstead Nanopure II System 

(Sybron Bamstead, Boston, MA, USA). 

The Silicalite particles were between 5 and 10 ^m and used as obtained from the 3M 
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Fig. 1 Experimental setup for displacement chromatography. Load (TOP) and inject 
(BOTTOM) positions are shown. 
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company (3M Company, St. Paul, MN, USA). The following packing procedure was followed. 

Silicalite was added to 2-propanol and sonicated xmder vacuum for 15 minutes or more. This 

removed any trapped air bubbles in the Silicalite and produced a slurry which was then packed 

into 4.6 mm i.d. HPLC columns. A Shandon HPLC packing pump (Shandon Southern, 

Sewichley, PA, USA) was used at a pressure of 4000 psi. Nucleosil silica-C18 particles of 5 |jm 

diameter (Alltech Associates, Inc., Deerfield, IL, USA) were slurried in methanol and pack at a 

pressure of 3000 psi. Samples were prepared by diluting 1000 ppm stock solutions with the 

eluent to the final desired concentration. 

Results and Discussion 

Analytical Separations 

The additional mechanism of size-exclusion should permit unique separations to be 

obtained with a Silicalite stationary phase. The characteristics of Silicalite were investigated by 

separating a variety of compounds. A 10 cm Silicalite column packed with 5-10 |jm particles 

was used for all separations unless otherwise noted. Several comparisons were made between 

a 10 cm Silicalite colimm and a 10 cm silica-C18 column packed with 5 |j.m particles. In most 

comparisons, the flow rate or percentage acetonitrile in the eluent has been modified to yield 

similar retention times. 

A separation of several ketones is shown in Figures 2 and 3. A 50% acetonitrile eluent 

permits a nice separation, however methanol eluted these compoxmds very slowly. As shown in 

Figure 3, after nearly 20 minutes only one peak (acetone) has eluted. Methanol is known to be 

a somewhat weaker eluent for HPLC, but is particularly poor for Silicalite. This may be due to 
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Figs. 2,3 Separation of acetone (1), 2-butanone (2), 2-pentanone (3), 
and 2-hexanone (4) on a 10 cm Silicaiite column with 50% 
acetonitrile (Top) and 50% methanol (Bottom) as the eluent. 
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methanol self-associating via hydrogen bonding much like water. 

Phenols were chosen as one group of compounds to study. The benzene ring diameter 

is approximately 5-6 A in diameter, and should be able to interact with the hydrophobic channels 

of Silicalite. Nimierous phenols are available with many different substituents. These substituted 

phenols should permit the investigation of the size-exclusion effect of Silicalite. A gradient 

elution of several p-alklyphenols is shown in Figure 4. The background absorbance rises due to 

the increased acetonitrile concentration, but has been subtracted from the phenol separation to 

produce the flat baseline. These phenols are substituted in the para positions with methyl through 

heptyl groups. Heptylphenol is obviously larger than cresol, although is it not excluded from the 

Silicalite channels. The alkyl groups are opposite the -OH group, which should allow the 

molecules to "slide" into the charmels. They can fit in one direction, but not the other. This is 

the same elution order expected for a silica-C18 stationary phase. 

Figures 5-11 are separations of various phenol mixtures. Figure 5 and the comparison 

made in Figures 6 and 7 are shown to demonstrate the size-exclusion effect. The most bulky 

substituted phenol in Figure 5, 2,6-di-rer/-butyl-4-methylphenol, elutes very near the injection 

peak, even earlier than phenol. This molecule is too bulky to fit into the channels and was 

therefore not retained. Also note the nice separation of the trimethylphenol isomers (this 

separation is compared with silica-C18 in Figures 8 and 9). The size-exclusion effect is also 

shown in Figures 6 and 7 with several chlorophenols. The largest molecule, pentachlorophenol, 

elutes first on the Silicalite column, but comes out much later on silica-C18. As before, this 

molecule is excluded from the channels due to the large size. The elution order of the mono 

substituted chlorophenols is 2-, 3- and fmally 4-chlorophenol. This order might be expected 
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Fig 4. Separation of n-alkylphenols on a 5 cm Silicalite column witli background 
subtraction. 
Gradient: 30 % acetonitrile for 2 minutes. 

30-50 % acetonitrile from 2-10 minutes. 
50 % acetonitrile for 5 min at 1 ml/min. 

Peaks: 4-cresol (1), 4-ethylphenol (2), 4-propylphenol (3), 4-n-butyIphenol (4), 
4-n-amylphenol (5), 4-n-heptylphenol (6) 
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Fig. 5 Separation of 1-5 ppm 2,6-di-/er/-butyl-4-metliylphenoI (1), phenol (2), 2,4,6-
trimelliylphenol (3), and 2,3,6-trimeUiylplienol (4) on a 10 cm Silicalite column 
wiUi 30% acetonitrile at 1 ml/min as the mobile phase. 
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Figs. 6,7 Separation of 10 ppm 2-, 3-, 4-chlorophenol, and 
pentachlorophenol on 10 cm columns with 35% acetonitrile 
at 1.25 ml/min as the mobile phase. 
TOP: silica-CIS 

Elution order is 2-, 4-, 3-, pentachlorophenol. 
BOTTOM: Silicalite 

Elution order is pentachlorophenol, 2-, 3-, 4-. 
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based on the molecular shape. 4-chlorophenol is able to fit more easily into the channels and 

therefore retained the longest. The other isomers are more bulky and elute earlier. A separation 

of two trimethylphenols is shown in Figures 8 and 9. The 2,4,6- isomer, which is more bulky 

than 2,3,6-trimethylphenol, elutes first on Silicalite. The elution order is reversed on the silica-

CIS. The separation of three /e/*?-butylphenols is compared in Figures 10 and 11. Note the 

improved resolution and different elution order on the Silicalite. The elution order is somewhat 

difficxilt to explain. The para compound elutes first, although based on molecular shape, it 

should partition into the channels more easily than the meta or ortho compounds. 

Many phenol positional isomers were separated nicely with Silicalite. A more challenging 

separation would be cis/trans stereoisomers, which have the same connectivity. Figures 12-21 

compare the separation of several cis/trans isomeric pairs. The first comparison in Figures 12 

and 13 is cis and trans 1,2-dichloroethylene. These are fairly small molecules, but the different 

position of the chloro group was enough to alter the interaction with the Silicalite chaimels. The 

silica-C18 column does provide slight separation, but would require longer analysis time for 

complete separation. Both isomers of 1,2-dichloroethylene may be purchased separately, and 

elution order was therefore confirmed. The other isomers used for comparisons cannot be 

purchases separately, but are sold as "predominately trans". It was assumed that the smaller peak 

is due to the cis isomer. The next three comparisons for crotonaldehyde, crotyl alcohol, and 4-

hexene-3-one were all very similar. A near-baseline separation was obtained with Silicalite in 

under four or five minutes. No separation, or very slight separation was obtained with the silica-

C18. In each case, the cis isomer eluted first. The shape of the trans isomer must permit a 

better fit into the Silicalite channels. The separation of cis/trans crotononitrile is shown in 
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Figs. 8,9 Separation of 25 ppm 2,3,6-trimethylphenol and 2,4,6-
trimethylphenol on 10 cm columns with 32% acetonitrile as 
the eluent. 
TOP; silica-C18 with flow of 2 ml/min. 

Elution order is 2,3,6-, 2,4,6-trimethylphenol. 
BOTTOM: Silicalite with flow of 1 ml/min. 

Elution order is 2,4,6-, 2,3,6-trimethylphenol. 
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Figs. 10,11 Separation of 25 ppm 2-, 3-, and 4-terihutylphenol on 10 cm 
columns with 32% acetonitrile as the eluent. 
TOP: siIica-C18 with flow of 2 ml/min. 

Elution order is 3-, 4-, 2-rer/butylphenol. 
BOTTOM; Silicalite with flow of 1.5 ml/min. 
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Figs. 12,13 Separation of 25 ppm cis/trans 1,2-dichloroethylene on a 5 
cm column with acetonitrile at 1 ml/min as the eluent. 
TOP: siIica-C18 with 60% acetonitri le.  

Elution order is cis, trans. 
BOTTOM: Silicalite with 75% acetonitrile. 

Elution order is cis, trans. 
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Figs. 14,15 Separation of 10 ppm cis/trans crotonaldehyde on a 10 cm 
colnmn with acetonitrile at 1 ml/min as the eluent. 
TOP: silica-C18 with 12% acetonitrile. 
BOTTOM: Silicalite with 30% acetonitrile. 
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Figs. 16,17 Separation of 50 ppm cis/trans crotyl alcohol on a 10 cm 
column with acetonitrile a 1 ml/min as the eluent. 
TOP: silica-C18 with 12% acetonitrile. 
BOTTOM: Silicalite with 20% acetonitrile. 

I 



www.manaraa.com

115 

100 

00 -

0 2 -J s a 10 
Mi nutes 

100 

ao 

60 

20 

0 
0 a 10 

MInutes 

Figs. 18,19 Separation of 15 ppm cis/trans 4-hexene-3-one on 10 cm 
colimms with 80% acetonitrile at 1 ml/min as the eluent. 
TOP: silica-C18 with 50% acetonitrile. 
BOTTOM: Silicalite with 80% acetonitrile. 
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Figures 20 and 21. This compound contains similar amounts of each isomer. These isomers 

were resolved in three minutes with Silicalite, while no separation was obtained with silica-C18. 

It is interesting to note the first peak is larger. Crotononitrile may be slightly enriched with the 

cis isomer, or the elution order was opposite from the previous chromatograms. It is difficult to 

determine which is true without the pure isomers to confirm retention times. These separations 

were reproducible. Very similar separations were obtained on different columns several months 

apart. 

Displacement Chromatography 

The ability of Silicalite to efficiently separate cis/trans isomers was taken a step further 

to a prep scale. Displacement chromatography was used to attempt a separation of 25-50 mg 

crotononitrile on a 10 or 15 cm Silicalite columns. A saturated solution of crotononitrile in water 

(« 30,000 ppm) was loaded on the Silicalite, after which the eluent containing the displacing 

molecule was pumped through the column. The displacement column effluent was sent through 

a 5 |al injection loop on the way to the detector. Turning an injection loop sent a 5 ^il portion 

of the effluent to a second column that performed the cis/trans isomer separation and quantitation. 

This allowed the effluent to be monitored every 1-2 minutes, the time necessary for the analytical 

separation (Figure 1). 

n-Butanol is a common molecule for displacement chromatography, and was one of the 

first eluents used. Various concentrations up to about 6% butanol in water were used but vwth 

little success. The best separation with n-butanol is shown in Figure 22. Crotononitrile was 

loaded at 0.25 ml/min and eluted with 0.73 M n-butanol at 0.25 ml/min. Both isomers tail 

significantly, indicating that butanol is not a strong displacing molecule on Silicalite. Other 
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Figs. 20,21 Separation of 10 ppm cis/trans crotononitrile on 10 cm 
columns with acetonitrile at 1 ml/min as the eluent. 
TOP: sil ica-C18 with 25% acetonitri le.  
BOTTOM: Silicalite with 50% acetonitrile. 
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Fig. 22 Displacement chromatogram of 25 mg crotononitrile on a 10 cm Silicalite column. First fraction 
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alcohols, ketones, esters, and ethers were tested as displacing molecules. Several flow rates, 

columns, and concentrations were also tested. The optimum conditions were found to be a load 

solution of 30,000 ppm crotononitrile at 0.2 ml/min and an eluent of 2.5% ethyl propionate at 

0.2 ml/min. The chromatogram obtained under these conditions is shown in Figure 23. The 

separation was much improved, although slight overlap still occurred as did tailing of the second 

peak. The composition of crotononitrile is approximately 70% trans / 30% cis, based on the peak 

area of an analytical separation. Injection of 50 mg is therefore about 35 mg trans. Based on 

the curve in Figure 23, 28-30 mg of pure trans crotononitrile could have been recovered. 

Considering the inability of silica-C18 to separate cis/trans mixtures, this larger-scale separation 

is quite good. This type of separation is one exciting possible application of a Silicalite stationary 

phase. 

Conclusions 

Silicalite has been shown to be a viable EDPLC stationary phase. The size-exclusion effect 

provides another mechanism to provide increased selectivity. Molecules that are too large elute 

very quickly, while smaller molecules may partition into and out of the channels. Differences 

in selectivity and efficiency were observed between Silicalite and silica-CIS for many 

compounds. Cis/trans stereoisomers, which are difficult to separate on silica CI8 were well 

separated on Silicalite in only a few minutes. A larger scale separation using displacement 

chromatography was possible with Silicalite. With this technique, milligram quantities of pure 

isomer may be collected. 
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GENERAL CONCLUSION 

Introduction of hydrophilic functional groups to PS-DVB resins increases the extraction 

efficiency of polar organic molecules from water. In this work, the effect of resin sulfonation 

has been determined. Sulfonated resins yield better recoveries of many compounds from aqueous 

solutions. Capacity factors of several organic compounds were measured in pure water, which 

permitted the optimum sulfonation capacity to be determined. A capacity of 0.6 mequiv/g was 

found to retain polar organic compounds most efficiently. Empore membranes embedded with 

sulfonated resin are simple to use and provide efficient extraction of many compounds. 

Breakthrough analysis was used to compare sulfonated and tmsulfonated Empore membranes. 

Breakthrough on the sulfonated membrane was much sharper, indicating a more efficient 

extraction process. 

Non-aqueous eluents used with macroporous cation-exchange resins permit several 

separations that are very difficult to obtain with aqueous eluents. Methanol was found to be the 

most favorable solvent due to the best combination of resolution and peak shape. Acetonitrile 

and ethanol, although producing broader peaks, were useful for separating ions that usually elute 

close together, Li^/Na^ and K^/NH4^ respectively. Elution order in acetonitrile is reversed from 

that found with aqueous eluents: Cs^<Rb^<K^<Na^<Li^. Addition of 18C6 to the mobile phase 

improved both peak shape resolution of several ions. 

Ion-exchange of organic amines may be studied if organic eluents are used. These eluents 

will effectively remove all hydrophobic interaction. A plot of log k' vs. log IT (from 

methanesulfonic acid) is linear with a slope close to -1 in each of the four solvents studied. This 

is an indication that the separation mechanism is pure ion-exchange and not based on hydrophobic 
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attraction. The capacity factors of C,-C,o alkylamine cations showed very little change with 

regard to the number of carbon atoms. However, amine cations such as aniline, N-methylaniline, 

and N,N-dimethylaniline, are easily separated. These results indicate that the size and shape of 

the cation, particularly near the nitrogen, affect the ion-exchange selectivity. Practical separations 

of amine cations were obtained in methanol and ethanol with indirect conductivity detection. 

Large concentrations of neutral organic compounds in the sample did not interfere with the 

chromatographic separation and determination of the amine cations. 

Silicalite has been shown to be a viable HPLC stationary phase. The size-exclusion effect 

provides another mechanism that improves selectivity. Molecules that are too large to fit into the 

channels elute very quickly, while smaller molecules enter into the chaimels. Phenol positional 

isomers were separated on Silicalite. Improved resolution and changes in elution order were 

observed when compared to silica-C18. Cis/trans stereoisomers, which are difficult to separate 

on silica-C18 are efficiently separated on Silicalite. A larger-scale separation using displacement 

chromatography is possible on Silicalite. Using this technique milligram quantities of pure 

isomer could be collected. 
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